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SUMMARY

, This paper uses a very general version of the Iterative Proportional Fitting Procedure to

develop an algorithm for estimation in simultaneous logit models. The algorithm can be used

for any loglinear model which can be cast in the form of simultaneous logit equations. The

principal advantage of this method is that it is not necessary to fit parameters associated with

the sampling constraints and thus very large problems can be attacked. A numerical example

using GLIM and a sample GLIM macro are included.

KEY WORDS: Categorical Data. Loglinear Models. Iterative Proportional Fitting Procedure.
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1. INTRODUCTION

Simultaneous logit models have been oft-proposed but have suffered from a lack of a

suitable and easy estimation technique. We show how an application of some simple ideas

which underly the Iterative Proportional Fitting Procedure (IPFP) leads to a simple and

worthwhile algorithm. The same approach can be used for any loglinear model and is

potentially useful for large contingency table problems

Methods for analyzing data in the form of a binomial response variable with one or more

covariates are well known. A common method, and the one which corresponds to a loglinear

model, is logit regression. There are numerous programs (e.g., BMDPLR and GLIM) which

will find maximum likelihood estimates for the logit regression model. When the response

variable is multinomial, rather than binomial, the situation is rather different. The models

which correspond to logit regression posit a system of simultaneous logit models (see. e.g.,

Fienberg (1980). Fienberg and Mason (1978) and Nerlove and Press (1973)). One method of

finding M.L.E.'s in this case is to transform the simultaneous logit model into an equivalent

loglinear model. This approach, however, introduces potentially many nuisance parameters

corresponding to the "interactions" among the independent variables. It is possible that the

introduction of these extra parameters will make the model too large to be fit conveniently.

To overcome these problems Fienberg (1980) suggests fitting continuation ratios instead of the

maximum likelihood analysis. We will show that this procedure is actually the first step in an

IPFP and that the full IPFP is itself relatively easy to calculate. We also give a simple GLIM

macro for this analysis.

The method is developed in several steps. First we consider a multinomial response variable

with categorical explanatory variables. We then generalize this to continuous explanatory

variables and finally consider models more complicated than those normally discussed.

In order to develop the method we need a brief discussion of some theory underlying the

IPFP.

..... ... ..... -



3

2. BACKGROUND AND NOTATION

Csiszar (1976) presents a very elegant and general discussion of the IPFP by developing a

"geometry" for the information measure. A simplified version of the chief results of this

theory are outlined below. Let n, p. q, r, s, and t denote p.m.f.'s which are non-zero for all

elements of a finite set I. The Kullback-Leibler information number (or directed divergence)

specifies a distance,

1l(pil q) = 1 1 E €I p(i) In (p(i)/q(i))

between p and q. The principle of minimum discriminant information, as formulated by

Kullback (1959), aims to minimize the distance between a reference distribution, q above, and a

family of other distributions. The properties of such estimates have been studied extensively.

The most important results can be found in Kullback (1959) and are summarized, with a

special emphasis on contingency tables, in Gokhale and Kullback (1978). Darroch and Ratcliff

(1972) also used the directed divergence in their development of the Generalized Iterative

Scaling algorithm.

We need to specify an appropriate family, E. of probability mass functions (p.m.f.'s) over

which to minimize the distance. Linear sets of p.m.f.'s are a natural class and correspond to

usual loglinear models. A convex set. E, of p.m.f.'s is called linear if when p and q are in E

and t a • p + (1-a) • q (a c P) is a p.m.f.. then t is also in E. A p.m.f. which satisfies

I(qlJr)= min I (pcr)

is called the I-projection of r on E and will be denoted by q - PE(r). Csiszar gives

conditions under which PE(r) exists (it is always unique) and develops a geometry for I-

projections by using an analogue of Pythagorous' Theorem. Now let F = !f : y £ M be a set

of real valued functions on I and A = (a y M r} be real constants. Define MF to be span

(F). A linear set, E, can be constructed by considering the set of p for which,

Y "p(i) ' fY(i) Y e .

- C -I
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When we consider s to be an observed probability function and

a = s(i) f (i) : y cr

then the duality between maximum likelihood and minimum discriminant (see e.g. Darroch and

Ratcliff (1972)) estimation states that if

PEr)

then

ln() £ MF + In(r)

and

SF,

i.e. q is the m.l.e. (under Poisson sampling) for the corresponding log-affine model. Csiszar's

principal theorem says that if E is the finite intersection of the linear sets E( (i.e. E =U E )
Le K

then q = PE(r) is the pointwise limit of q,, = PE (q.) n = 1.23 . . . where q, = r and E.

E if i = n mod I K

It is this theorem on cyclic projections that we shall use for the simultaneous lognt algorithm.

For more details about the above theory see Csiszar (1976) or Meyer (1981a) and for another

application of the theory see Meyer (1981b). We now present a short example to illustrate the

notation.

Example I

Let p be an observed 3x3 probability function obtained via multinomial sampling and

consider the model

~p(ij)) = q(i,j)

and Jn(q(ij)) = + a + Bj ; i,j = 1,2,3, i.e. independence of row and column categories.

The linear manifold for this model is spanned by a set of tables, fV and fV, where
Sk i R

f (k,.) = 0

0 ki

~and



I

. 1 e=j
f' (k.t)=C 0 t, j

CNow let FR ={Y."i =1.2.3}

and F = FRUF,

We further allow aR = I.e p(k,t) fR(k.).R = (.t

and a' =k. p(k,) f ()

and define ER and Ec to be the linear spaces generated by the fR" aR and fc, ac pairs.

The maximum likelihood estimate q(i,j) can be generated by taking q,(i,j) = 1 Vi,j and

successively forming the I-projections onto ER and Ec. This algorithm is just the usual IPFP

and converges after one step.

3. SIMPLE SIMULTANEOUS LOGIT MODELS FOR A THREE-WAY TABLE

In this section we consider simultaneous logit models for three way tables where there is one

response variable and two explanatory variables. In the next section we consider the general

simultaneous logit case.

Consider a multinomial response variable A (with I levels) and explanatory variables B (with

J levels) and C (with k levels). Denote the table of observed counts by

ijk 1 ; j .. K)

where w is the number of responses at level i when the explanatory variables, B and C. are

at levels j and k respectively. In this discussion we transform the data w into a probability

vector, z Jk = w jk / w... This is not necessary in practice. We will denote the expected cell

* probability E(z Q) by m ik

When I = 2 the saturated logit regression model, using the notation of Fienberg (1980), is
logit (m k V + V2(j) + V NO + V23(jk)

If we leave out the interaction term, v23' the model becomes
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logit (M.= v + V, + 3(

with likelihood equations

mn z

and the sampling constraint

rn1k Zjk

It is a simple matter to rewrite this model as a loglinear model, viz.. In(m ,) u u,( u,2

+ U + U + U + U, with likelihood equations
3() 1 (1) 13iuk 23ijk)

ki IJ*

The logit model was defined only for 1 2 but the loglinear model is defined for any, value

of 1. If we consider this arbitrary loglinear model we can write it as the set of simultaneous

logit models

(3.1-1) Wn J/in, 1) = v, + 21

1k(3.1-2) ln~nmj /mi j = v+ V ,2J +V2 k

(3.1-0l-1)) Wnin / i VI1+ v' 1-1

(3.1-0I)) Wnin / n) v, + V' V
IjI k 1A (p 2W1

* The last equation. (3.1-0l)) is redundant but it doesn't hurt to include it and it may actually

*improve the resulting algorithm. We shall similarly break up the likelihood equations into

m1 k z 1~ , 2 +k Z,+

m + in,, Z +jI
Ijk j lik 2jk
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m2, = zs • m3 , =z3

(3.2-2) m 2 . = Z1.

mi + m Z'1k + z

m - 1. - = z i- 1 -.J ' IJ mzj 1-

m li + m i = Zl.) + zij

in]). = zj . =Fz1 . ,-

(3.2-(I)) in -Ik m1k -- z

mIljk + mijk Z zIjk

To fit the full loglinear model would require IJK - (l-1)(J-1)(K-1) parameters. perhaps a

very large number. Each of the logit models requires only J K - 1 parameters. If we

needed to fit only the logit models then the problem would be easy.

Consider the following algorithm. Let no = 1, V ijk. Estimate inand ;] .using the logit
model (3.1-1) with likelihood equations (3.2-1) and set n 0 Afor # 1.2. Now estimate

12 and 2 from (3.1-2) and (3.2-2) with in2 
=n' for i 0 2,3. Continue cycling through the

2ja. f-2 uk ,A

logit equations. each time adjusting one pair of the multinomials leaving the rest untouched.

Each iteration of the algorithm is a (small) logit regression problem with an entire cycle

requiring I logit regressions. We will now show that in.k converges to the M.L.E. inj k.

If we view the problem from the I-divergence point of view we know that we require
F = pE( n°)

where E {p.m.f.'s p,,, : p1 j- z..
'3,

PJk =z ik
Puik Z.jk"

If we view the logit regressions as merely calculating I-projections we note that



m =PE (,no)

where
E= {p.m.f.'s p,,, satisfying (3.2-1)1

and
n= PE,(in')

where
E= {p.m.f.-s p,. satisfying (3.2-2))

etc.

As f' E = E (in fact nI - E = E) we can invoke the theorems on I-projections and state

that n' must converge to the M.L.E.
1L

Thus the procedure of sequentially solving the logit equations is really a version of the IPFP.

There is nothing special about the particular logit formulation we have used. All that is

required is that the E corresponding to the logit models must have an intersection which is E.

We note that some of the orderings suggested by Fienberg (1980. p.110) do not satisfy this

requirement, although they are sensible for other reasons.

-. Generally it is not possible to obtain estimates of asymptotic (co)variance matrices using an

IPFP algorithm. In this case. however, if the method used to solve the individual logit

problem will yield asymptotic (co)variance estimates then this information can be used to

compute (co)variance estimates for the multinomial logit problem. For example. if estimates

for the vy_ and their covariance matrices for t = 1. I are obtained on the last cycle of the

algorithm, these will be correct for the full problem. It is. however, impossible to find

estimates of the correlations between, say. v' and v3
. for exactly the same reasons that

covariances are unavailable in the usual IPFP.

In order to clarify the above discussion we present a small numerical example of a trinomial

*
4 L,- -.

- .
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logit regression problem.

Example 2

Consider two explanatory variables, sex and intelligence, each with two levels. For each

combination of levels we observe a trinomial response. The data are

Response
D E F

I(1) S(1) 7 7 7
S(2) 8 24 20

1(2) S(1) 9 6 16
S(2) 26 11 16

The simultaneous logit model we consider is

ln(D/E) : G' I' S'

ln(E/F) :G' S'

and ln(F/D) G ' -

Each of these logit models requires 3 parameters whereas the equivalent loglinear model has

10 parameters (6 corresponding to two logit models and 4 from the sampling constraints). By

using a loglinear model algorithm we obtain the M.L.E. for the cell means as approximately

!. Response
D E F

I(1) S(1) 4.035 7.634 9.331
S(2) 10.965 23.366 17.668

I(2) S(1) 11.965 5.366 13.668

S(2) 23.035 11.634 18.331

After one cycle of the simultaneous logit approach (i.e., 3 logit models) the fitted values are

Response
D E F

1(1) S(1) 4.217 7.163 9.621
S(2) 10.783 23.837 17.379

1(2) S(1) 11.783 5.837 13.379
S(2) 23.217 11.163 18.621
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ant a!!" " ,,', nt: uite,'Calues are the same as those from the loglinear model algorithm.

%I onstrain nt paramctcrs so that ! and St are zero, for t = 1.2.3 then the

estimated parameter \alues and their standard errors arc:

Parameters Estimated parameter Estimated s.e.

G -. 638 .4706

1 -. 119 .4737

S 1.440 .4327

G 2 -. 201 .4015

12) .480 .4278

S2  -.734 .4023(,2)

G3  .839 .4341

1 -.361 .4111

S. -.705 .4074
(2)

While it is possible to calculate the estimated covariance between, say, G' and . from the

Newton algorithm used for the logit regressions, it is not possible to estimate the covariance

between, say, 6' and G".

The calculations for this txample were performed using GLIM and the complete output and

macros are in the Appendix.

4. GENERAL SIMULTANEOUS LOGIT MODELS

Thus far we have only touched the surface of models which can be fit using this technique,

but the general form is the same as the specific example we have considered. Let J = {1.2.....

J) be an index set and suppose that for each element of J we observe an 1-nomial response.

Denote the response by x , i = 1.... I, J £ J and the expected count by m. In other words

we have product-multinomial sampling with x observations in category j. Any of the usual

factorial loglinear models which condition on the explanatory variables can be written in the
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simultaneous logit form,

ln(m /m,) M

ln(m ./m) M

ln(m /m ) M

where M is a linear manifold in R . The linear manifold M determines a linear space of

p.m.f.'s E. Just as in the previous case, cycling through the logit equations leads to the

M.L.E.'s for the corresponding loglinear model.

In the above formulation there is no need for each logit to belong to the same linear

manifold. In other words, the most general form of loglinear model which satisfies the

sampling constraints can be written as

ln(m, /m) £M

In(m,.. /m .) M ".

ln(m /M M

where each M C Rj. Each M. determines a linear space of P.D.'s, E a subset of the p.m.f.'s on

I x J points, and sequentially fitting the logit models produces the I-projection onto
A

E = fl - E f. Thus any loglinear model which involves product-multinomial constraints, or can

be written in this form, can be fit as a sequence of logit models. In this way it is possible to

fit the loglinear model without necessarily fitting "parameters" for the product-multinomial

*constraints.

.1
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F1,!APPENDIX 1. A GUIM MACRO AND AN EXAMPLE

1.1. GUIM MACROS

The following GLIM macros were used to calculate the multinomnial logit estimates of

Section 3.

$SUB MLOG
SPRI '*DELETE logithelp IF NOT NEEDED*
$MAC LOGITHELP!

There are 6 macros. 3 which include parameter estimates and three which don't.!
WOUT - Basic macro with parameter estimates, requires macros DM and PARA.!
NOUT - Basic macro without estimates, requires macros DD and LOG.

Typically one would use NOUT until satisfied that the process has converged!
and then WOUT , once. to get parameter estimates.!
NOUT and WOUT have up to 9 arguments, one for each response level.!
Initialize the -1- with $ARG NOUT A B ... I , where A B ... I are identifiers!
for the response levels. The scalar %N must be set to the number of
response levels and NOUT and WOUT must have %N arguments.!
To get started, one needs to fit the model to some data. any will do.!
The identifiers A B ... I are overwritten with the fitted values.
so copy them or you'll loose them.'

SENDM

$MAC NOUT!
$CAL %D=O!
$OUT SARG LOG %1 %2 %3 %4 %5 %6 %7 %8 %9 $USE LOG!
SUSE DD $OUT 5 SPRI 'CONVERGENCE '%D SEND
SMAC DD!
SYVAR %I $CAL ZZ=%l+%2 $ERR B ZZ $FIT . $CAL %D=%IF(%ciT(%DNV.%D).%DV.%D)!
$CAL %1=%FV $CAL %2=ZZ-%1 SEND
$MAC LOG !
SARO DD %1 %2 $USE DD SARG DD %2 %1 $CAL %M=%EQ(%N.2) $EXIT %M!
SARG DD %2 %3 SUSE DD SARG DD %3 %l $CAL %M=%EQ(%N.3) $EXIT %M!
SARG DD %3 %4 $USE DD SARG DD %4 %1 $CAL %M=%EQ(%N.4) SEXIT %M!
SARG DD %4 %5 $USE DD SARO DD %5 %1 $CAL %M=%EQ(%N.5) SEXIT %M!
SARG DD %5 %6 SUSE DD SARG DD %6 %1 $CAL %M=%EQ(%N.6) SEXIT %M!
SARO DD %6 %7 $USE DD $ARG DD %7 %1 $CAL %M=%EQ(%N.7) $EXIT %M!
SARO DD %7 %8 SUSE DD SARG DD %8 %1 $CAL %M=%EQ(%N,8) $EXIT %M!
SARG DD %8 %9 SUSE DD SARG DD %9 %1 SEND

SMAC WOUT!
$CAL %D=O!
SARG PARA %1 %2 %3 %4 %5 %6 %7 %8 %9 $USE PARA'
$USE DM SPRI 'CONVERGENCE ' %D SEND
SC need to get routines for goodness of fit here.
SMAC PARA !
SARG DM %1 %2 $USE DM SARO DM %2 %1 $CAL %M=%EQ(%N.2) $EXIT %M!



14

$ARG DM %2 %3 $USE DM $ARG DM %3 %1 $CAL %M=%EQ(%N.3) SEXIT %M!
$ARG DM %3 %4 $USE DM $ARG DM %4 %1 $CAL %M=%EQ(%N.4) $EXIT %M!
$ARG DM %4 %5 $USE DM $ARG DM %5 %1 $CAL %M=%EQ(%N.5) SEXIT %M!
SARO DM %5 %6 $USE DM $ARG DM %6 %1 $CAL %M=%EQ(%N.6) $EXIT %M!
$ARG DM %6 %7 $USE DM $ARG DM %7 %1 $CAL %M=%EQ(%N.7) $EXIT %M!
$ARG DM %7 %8 $USE DM $ARG DM %8 %1 $CAL %M=%EQ(%N,8) $EXIT %M!
$ARG DM %8 %9 $USE DM $ARO DM %9 %1 $END
SMAC DM !
SYVAR %1 SCAL ZZ=%l+%2 $ERR B ZZ $FIT . $CAL %D=%IF(%GT(%DV.%D).%DV,%D)!
SDIS E $CAL %1=%FV $CAL %2=ZZ-%1 $END
$RETURN
$FINISH

1.2. AN EXAMPLE USING THE MACROS

The complete GLIM output for Example 2 is presented below.

GLIM 3.09 (C)1977 ROYAL STATISTICAL SOCIETY, LONDON

?$INPUT 35 MLOG SC ... INPUT THE MACROS $

*DELETE logitheip IF NOT NEEDED*

?$PRINT LOGiTI-ELP $

There are 6 macro,. 3 which include parameter estimates and three which don't.
* WOUT - Basic macro with parameter estimates, requires macros DM and PARA.

NOUT - Basic miacro without estimates, requires macros DD and LOG.

Typically one would use NOUT until satisfied that the process has converged
and then WOUT ,once, to get parameter estimates.
NOUT and WOUT have Up to 9 arguments. one for each response level.
Initialize the run with $ARG NOUT A B ... I , where A B ... I are identifiers
for the response levels. The scalar %N must be set to the number of
response levels and NOUT and WOUT must have %N arguments.
To get started, one needs to fit the model to some data, any will do.
The identifiers A B ... I are overwritten with the fitted values.
so copy thenm or you'll loose them.

?SEL LOGITHELP $UNIT 4 $DATA D E F $READ

?77 7 8 24 20 9 616 26 1116 $

?$FACTOR I 2 S 2 $CAL I=%GL(2,2) :S=%GL(2,1) $

?$CAL T1=1 :T2=2 SYVAR TI $ERR B T2 SC ... GET THE ALGORITHM STARTED S

WSIT S+l $

SCALED



CYCLE DEVIANCE DF
4 0.8195E-15 1

?SCAL A=D :B=E :C-F SC ... COPY THE DATA SO THAT IT ISN'T LOST S

?$CAL %N=3 SARG NOUT A B C SUSE NOUT $

CONVERGENCE 2.791
?$LOOK A B C $

1 4.217 7.163 9.621
2 10.78 23.84 17.38
3 11.78 5.837 13.38
4 23.22 11.16 18.62

?SC ... THESE ARE THE ESTIMATES AFTER THE FIRST ITERATION S

?$USE NOUT $

CONVERGENCE 0.0950

?$USE NOUT $

CONVERGENCE 0.0013
?$USE NOUT $

CONVERGENCE 0.0000

?$C ... NOW USE WOUT TO GET PARAMETER ESTIMATES. ETC. $

I ?$ARG WOUT A B C SUSE WOUT $

SCALED
CYCLE DEVIANCE DF

3 0.2651E-06 1

ESTIMATE S.E. PARAMETER
1 -0.6377 0.4705 %GM
2 -0.1189 0.4737 S(2)
3 1.440 0.4327 1(2)

SCALE PARAMETER TAKEN AS 1.000

CURRENT DISPLAY INHIBITED
SCALED

CYCLE DEVIANCE DF
3 0.8341E-07 1

ESTIMATE S.E. PARAMETER
1 -0.2008 0.4015 %GM
2 0.4803 0.4278 S(2)
3 -0.7342 0.4023 1(2)

SCALE PARAMETER TAKEN AS 1.000
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----- CURRENT DISPLAY INHIBITED
SCALED

CYCLE DEVIANCE DF
3 0.3044E-07 1

ESTIMATE S.E. PARAMETER
1 0.8385 0.4341 %GM
2 -0.3614 0.4111 S(2)
3 -0.7054 0.4074 1(2)

SCALE PARAMETER TAKEN AS 1.000

CURRENT DISPLAY INHIBITED
CONVERGENCE 0.0000
?$LOOK A B C $

1 4.035 7.634 9.332
2 10.97 23.37 17.67
3 11.97 5.366 13.67
4 23.03 11.63 18.33

?$C ... ONE COULD NOW WRITE MACROS TO TEST GOODNESS-OF-FIT OF
A B C WITH D E F $

?$STOP

b
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